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Monte Carlo simulations of solute ordering in nematic liquid crystals:
Shape anisotropy and quadrupole-quadrupole interactions as orienting mechanisms

James M. Polson*
Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T 1Z

E. Elliott Burnell†
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Monte Carlo computer simulations were used to investigate the effects of shape anisotropy and electrostatic
interactions as mechanisms for orientational ordering of solutes in nematic liquid crystals. The simulation
results were analyzed in terms of two theories of solute ordering which derive mean-field orientational poten-
tials from the intermolecular pair potential. In the calculations, solute and solvent molecular shapes were
approximated by hard ellipsoids. Most simulations also incorporated the interaction between point quadrupole
moments placed at the centers of the ellipsoids. In the hard-core systems, orientational order parameters and
distribution functions were calculated for a collection of different solutes under a variety of conditions. A
theory due to Terzis and Photinos@Mol. Phys.83, 847 ~1994!# was found to underestimate the effect of shape
anisotropy on orientational ordering drastically. The introduction of an effective solvent packing fraction was
unable to improve the predictive power of the theory significantly. The quadrupolar systems were used to
investigate a mean-field model for solute ordering which considers an interaction between the solute molecular
quadrupole moment with an average electric-field gradient. The simulations indicate that the electric-field
gradient sampled by the solute is highly dependent on the properties of the solute, contrary to some experi-
mental evidence. Further, the effects of the intermolecular quadrupolar interactions on orientational ordering
and the electric-field gradient were analyzed using a mean-field potential derived here and based on the theory
due to Emsley, Palke, and Shilstone@Liq. Cryst. 9, 649 ~1991!#. This model was found to provide a qualita-
tively correct but quantitatively imprecise prediction of orientational ordering.@S1063-651X~97!14003-X#

PACS number~s!: 61.30.Cz, 61.20.Ja
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I. INTRODUCTION

The property of orientational ordering in the nema
liquid-crystalline phase arises from the presence of an
tropic intermolecular forces. Important examples of these
clude short-range repulsive forces and long-range dispers
electrostatic and induction interactions. Among these,
short-range interaction, coupled with the high degree
shape anisotropy typical for most nematogens, is gener
believed to be the principal factor underlying the stability
the phase@1–4#. The long-range interactions, which aris
from the presence of permanent molecular electrostatic m
tipole moments and polarizabilities, are believed to hav
smaller effect on the molecular ordering. An important o
jective in the study of liquid crystals is the attempt to gain
detailed understanding of the effects of each of the com
nents of the intermolecular pair potential on the structure
the phase. While this understanding is not yet complete,
nificant progress has been achieved through a combinatio
experimental, theoretical and, more recently, computer si
lation techniques.

Nuclear magnetic resonance~NMR! has long been recog
nized as an excellent experimental technique for study
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551063-651X/97/55~4!/4321~17!/$10.00
o-
-
n,
e
f
lly
f

l-
a
-

o-
f
g-
of
u-

g

orientational ordering in liquid crystals@5–7#. An analysis of
the spectra of orientationally ordered molecules provides
ues of various NMR coupling constants, which in turn yie
second-rank orientational order parameters. However, ap
cation of the technique to study the nematogens themse
can be complicated by the structural complexity and inher
flexibility of the molecules. These factors tend to complica
the analysis of both the spectra and the NMR coupling c
stants, and thus to preclude an accurate measurement o
entational order. This problem can be circumvented by
use of probe solutes, which in principle sample the sa
intermolecular forces that order the nematogens. General
rigid molecule with lower thanTd symmetry will be partially
oriented when dissolved in an anisotropic nematic envir
ment. Solutes may be chosen to simplify the spectral anal
and interpretation of the coupling constants; rigid solu
with relatively few nuclear spins are ideal. In addition, sp
cific solutes may be chosen to highlight the effects of a s
cific intermolecular interaction on orientational ordering. B
contrast, when studying the behavior of the nematog
alone, it is difficult to gauge the relative importance a
effects of the various intermolecular forces. Below, w
briefly review some of the important studies employi
probe solutes to study intermolecular forces in nematic liq
crystals.

Direct evidence of a specific intermolecular interaction
an orientational ordering mechanism was obtained in sev
studies employing deuterated molecular hydrogen as a so
in a nematic liquid crystal@8,9#. In particular, it was found
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that the interaction of the molecular quadrupole momen
both D2 and HD with an average electric-field gradie
~EFG!, which was measured directly from the analysis of t
2H NMR spectrum, provided a very accurate prediction
orientational ordering for these particular solutes@10#. It is
not unreasonable to hypothesize that all probe solutes e
rience a similar interaction between their quadrupole m
ments and an average EFG. However, to apply this resu
the analysis of order parameters of other solutes, it is ne
sary to assume that the EFG is a property of the nem
solvent alone, and not influenced significantly by solu
properties. This approximation is required because the E
can only be measured directly for the deuterated hydrog
where the internal EFG contribution to the NMR quadrup
lar coupling constant can be calculated accurately. Unfo
nately, it is difficult to test this hypothesis directly due to t
presence of additional ordering mechanisms, most nota
anisotropic short-range repulsive forces, which are n
negligible for larger molecules. Consequently, predictions
order parameters for a variety of solutes using known val
of quadrupole moments and values of the EFG measu
with molecular hydrogen tend to be poor@11,12#. However,
some experimental evidence of the validity of this mod
has been observed in the orientational behavior of spe
solutes. For example, acetylene, like D2, orients with a
negative order parameter in the nematic solv
N-4-ethoxybenzylidene-48-n-butylaniline ~EBBA! @12–14#,
a solvent which was determined to have a negative E
While it is difficult to rationalize this behavior by invoking
the presence of other orienting mechanisms, it is the p
dicted result for a molecule with a positive quadrupole m
ment which interacts with a negative EFG. Similarly, t
behavior of the order parameters for benzene and hexa
robenzene, molecules with very similar shapes, but w
quadrupole moments of opposite signs, follows the patt
predicted by the quadrupole-moment–EFG mechanism u
values of the EFG obtained from D2 for various nematic
solvents@12#. Finally, the presence of nonvanishing dipol
and quadrupolar coupling constants for deuterated meth
in a nematic solvent can be understood as arising from
vibration-rotation coupling that results from a second-ra
tensorial interaction between the solute and a solvent m
field @15#. A study of the quadrupolar coupling constan
gives consistent results for theoretically solvent-independ
quantities in different solvents only when an external E
with values determined in the studies of D2 and HD was
incorporated into the analysis@16#.

Emsley and co-workers have discussed the significanc
the EFG and its effects on the ordering of solutes in nem
solvents using a theory for orientational ordering which
closely related to the Maier-Saupe theory of nematics@17–
19#. In the context of this theory, it was shown that the ne
atogen quadrupole moment is the lowest order electros
multipole moment that provides a nonvanishing contribut
to the EFG. Further, it is possible to derive an expression
both the EFG and the contribution to a potential of me
torque arising from the presence of the EFG. However,
expressions for these quantities are complicated by their
pendence on the orientational distribution of solute-solv
intermolecular displacement vectors, a property which is
readily determinable by experimental methods. Thus
f

e
f

e-
-
to
s-
ic
e
G
s,
-
-

ly
-
f
s
ed

l
c

t

.

e-
-

o-
h
rn
ng

es
a
k
an

nt

of
ic

-
tic
n
r
n
e
e-
t
t
e

theory and its assumptions are difficult to test directly by
analysis of available experimental data. Nevertheless, a s
of the solvent dependence of the orientational behavior
anthracene and anthraquinone, molecules with similar sha
and polarizabilities but significantly different quadrupo
moments, was undertaken and analyzed using this the
@19#. It was concluded that the distribution of solvent-solu
intermolecular displacement vectors, and consequently
EFG, was strongly dependent on both solvent and solute
lecular properties, in contrast to the conclusions of Burn
and co-workers.

The description of the contribution to orientational orde
ing from electrostatic interactions by means of a solu
independent average EFG has also been criticized by P
nos and co-workers@20–22#. They provided experimenta
evidence that the interaction between local dipole mome
on solute and solvent molecules, in conjunction with sho
range repulsive forces, provide an additional order
mechanism@20,21#. In the context of the picture of an elec
trostatic mean-field introduced by Burnell and co-worke
and developed theoretically by Emsley and co-workers, s
ute dipole moments interact with an average electric fie
which is necessarily zero for an apolar nematic phase; t
the contribution to the mean-field potential should vani
Further, Terzis and Photinos constructed a theory to acco
for the contributions from both short-range repulsive forc
and arbitrary electrostatic interactions@22#. An interesting
result of this study was that electrostatic interactions w
found to provide a contribution to orientational orderin
which was roughly equal to that from the anisotropic rep
sive forces. In addition, it was shown that the electrosta
mean-field model of a solute molecular quadrupole mom
interacting with a solute-independent mean EFG was inc
sistent with their theoretical calculations.

The studies of Emsley and co-workers and Photinos
co-workers represent the only attempts to date to provid
rigorously theoretical understanding of the orientational
havior of molecules in nematic liquid crystals. The goal
these theories is to derive a mean-field orientational poten
which incorporates the molecular properties, such as sh
anisotropy and electric multipole moments, that give rise
the intermolecular interactions responsible for the alignm
of molecules. An alternative approach is the use of empir
mean-field orientational potentials. In a series of several
pers, Burnell and co-workers@23–28# studied the effects of
anisotropic short-range repulsive interactions by measu
orientational order parameters for a wide collection of s
utes in a nematic solvent mixture characterized by a z
EFG for D2 and HD. It was shown that the ordering of th
solutes generally were very well predicted by various mo
potentials that incorporate the details of the molecular s
and shape anisotropy. Further, it was found that the m
accurate models accounted for the molecular shape in
most detailed manner. In addition, the models could be u
as an effective tool in the analysis of the conformation
equilibrium of partially oriented flexible molecules@29–32#.
From these studies, it was concluded that the presenc
short-range repulsive interactions, which are expected to
strongly dependent on molecular shape, was the princ
factor responsible for solute orientational ordering. More
cently, a computer simulation study@33#, undertaken to
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55 4323MONTE CARLO SIMULATIONS OF SOLUTE ORDERING . . .
complement this experimental work, confirmed the conn
tion between these model potentials and the short-ra
forces, and provided further evidence that these forces do
nate the orientational behavior of molecules in nematic s
vents.

The empirical potentials used to model short-range rep
sive forces in the studies described above differ consider
from the theoretical potentials of the kind presented
Terzis and Photinos, and Emsley and co-workers, in that
latter are derived from some chosen form of the intermole
lar pair potential. In the derivation of these rigorous theor
ical models there are two types of approximations emplo
whose validity determines the accuracy of the theory:~1! the
modeling of the molecules and the pair potential, and~2! the
mathematical approximations required to integrate over
pair potential to obtain the mean-field potential. Unfort
nately, it is difficult to test the theory and the validity of th
approximations using the experimental data alone. T
problem is due to the fact that there are multiple contrib
tions to orientational ordering. Experiment provides at m
only a few orientational order parameters per solute, and
estimate of the relative magnitude and effect of each con
bution.

Computer simulations of solutes in nematic solvents
provide an effective bridge between experiment and the
The molecular models employed in the various theories
easily be incorporated into the simulations. A comparison
the simulation results with theory and experiment can th
provide valuable insight into the validity of the models f
the pair potential and the mathematical approximations u
in the theory. In addition, this approach provides a sim
method for examining the importance of each componen
the intermolecular pair potential as an orienting mechani
and how the complex interplay between the different con
butions varies with the properties of the solute.

In this paper, we employ the Monte Carlo computer sim
lation method to study the combined effects of shape ani
ropy and electrostatic interactions on orientational order
of solutes in a nematic phase. In addition, we use the si
lation results to test the accuracy of the theories of Terzis
Photinos, and Emsley and co-workers for solute orientatio
ordering in nematic solvents. We employ a minimal mod
for the intermolecular pair potential in order not to obscu
the interpretation of the results. Specifically, we model b
the solvent and solute molecules as cylindrically symme
hard ellipsoids with point quadrupoles placed at their cent
The hard-core component of this potential is designed
approximate the repulsive forces at short intermolecular
tances. Note that a variety of computer simulation stud
over the past decade have demonstrated that systems of
convex bodies such as ellipsoids can form a stable orie
tionally ordered nematic phase at sufficiently high densi
@34–37#. The additional electrostatic interactions used h
are expected to have an additional perturbative effect on
structure of the solvent. The simplified modeling of the s
ute molecular shape is designed to provide a computation
convenient method for investigating the effects of sol
shape anisotropy on orientational ordering. We empha
that this study is concerned with determining the gene
effects of molecular properties on ordering without attem
ing to simulate the precise behavior of any particular r
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solute. Thus we study a collection of ellipsoidal solutes w
a variety of sizes and dimension ratios.

The use of point quadrupoles to describe the electrost
properties of the solvent and solute molecules is likely a
more drastic approximation. At short intermolecular d
tances, the quadrupole-quadrupole interaction may yield
unrealistic estimate of the electrostatic interactions betw
molecular charge distributions. This limitation may be pa
ticularly problematic at the high densities typical of a co
densed phase. Nevertheless, there are important reasons
this model deserves to be investigated. It is important
determine the simplest model which can reproduce the m
qualitative behavior observed experimentally in real nema
systems. Further, the molecular models used in the theo
of orientational ordering described above also employ po
electrostatic multipole moments. Thus the simulations c
provide a test of the mathematical approximations emplo
in the derivation of the theoretical mean-field potentials. W
focus on the effects of quadrupole moments alone, sinc
principal goal of this study is to investigate the interaction
the solute quadrupole moment with the EFG generated
the solvent, and because the quadrupole moment is the
est order electrostatic multipole moment that the Emsl
Luckhurst theory predicts to contribute to a nonvanish
EFG. There are also important practical considerations
choosing this model. More realistic descriptions of the m
lecular charge distributions, such as the distribution of s
eral point multipole moments within the volume of the mo
ecule, would involve considerably more computational eff
to calculate the pair potential in the Monte Carlo~MC! simu-
lations. Also, quadrupole-quadrupole interactions decay
r25, which is sufficiently rapid to neglect very long-rang
contributions to the total energy. This also has a major in
ence on determining the speed with which the calculati
can be performed. Dipole-dipole interactions, by compa
son, decay asr23, and require the inclusion of much longe
range contributions to the total energy, as well as the us
Ewald sums to induce the convergence of the total ene
with increasing system size@38#. The result is a much more
time-consuming calculation.

To summarize, the description of a solvent or solute m
ecule as a hard ellipsoid with a point quadrupole represen
simple model with the following attributes:~1! it is compu-
tationally convenient;~2! it can be used to test the math
ematical approximations in current theories of solute ord
ing; ~3! it is a starting point to determine the basic molecu
properties required to explain the orientational behavior
solutes in nematics; and~4! it can be used to investigate th
individual effects of the contributions to orientational orde
ing from shape anisotropy and electrostatic interactions,
formation which is not readily obtained by experiment.

In Sec. II, we outline the basic ideas of the theoreti
models developed by Terzis and Photinos@22# and Emsley
and co-workers@17,18,39#. Section III describes the techn
cal details of the Monte Carlo simulations. In Sec. IV w
present the results of the simulations and discuss their
nificance in terms of both theoretical predictions and pre
ous experimental results. Section V summarizes the key
sults of this study.
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II. THEORY

A. Terzis-Photinos „TP… theory

Terzis and Photinos have developed a theory for the
scription of orientational order of solutes in a nematic s
vent which can incorporate dispersion, induction, short-ra
repulsive, and electrostatic interactions between the so
and solvent molecules@22#. We repeat the brief derivation o
the mean-field orientational potential presented in the or
nal paper in order to highlight the approximations discus
later on. Note that we include the effects of the short-ran
and electrostatic interactions only, since the effects of ind
tion and dispersion forces were found to be negligible.

The theoretical approach involves the reduction of the s
glet distribution function of the solute, which is given by th
following exact expression:

P~X!5Z21E dX1dX2•••dXNP̃N~X1 ,X2 , . . . ,XN!

3expF2(
i51

N

u~X,Xi !/kBTG , ~1!

whereX[(rW,v), P̃N(X1 ,X2 , . . . ,XN) is theN-particle sol-
vent distribution function in the absence of the solu
u(X,Xi) is the pair potential between the solute and thei th
solvent molecule, andZ is a normalizing factor. The princi
pal approximation of the theory is to neglect the correlatio
between solvent molecules,

P̃N~X1 ,X2 , . . . ,XN!' P̃~X1!P̃~X2!••• P̃~XN!, ~2!

which simplifies the expression of the solute distributi
function to the following:

P~X!;F E dX8P̃~X8!exp„2u~X,X8!/kBT…GN . ~3!

Short-range repulsive forces are approximated by a hard-
~HC! interaction between molecules, which can take the v
ues of zero or infinity depending on whether the molecu
overlap. Anisotropic long-range interactions are restricted
this treatment to electrostatic~ES! forces. Thus the pair po
tential can be written as

u~X,Xi !5uHC~X,Xi !1uES~X,Xi !. ~4!

Further, for spatially homogeneous system
P(X)5 f (v)/V andP̃(X)5 f̃ (v)/V. Thus the solute orienta
tional distribution function can be written as the following

f ~v!;FV21E dv8drW f̃ ~v8!$12K~rW,v,v8!%GN
[@12^K&#N, ~5!

where

K~rW,v,v8!512gHCexp~2uES/kBT!, ~6!

and where

gHC5exp~2uHC/kBT!. ~7!
e-
-
e
te
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Note thatK51 for overlapping particles and decays to ze
with increasingr , though it has appreciable values for
small localized volumeva , whereva

1/3 is of the order of a
few molecular diameters. The solute distribution functi
may be written

f ~v!;exp„N ln~12^K&!…. ~8!

Expanding the logarithm and neglecting terms of ord
(va /V)

2 and higher, it is trivial to show that

f ~v!;exp@2N^K~v!&#. ~9!

This corresponds to the following terms for the mean-fie
potential:

U~v!5UHC~v!1UES~v!, ~10!

where

UHC~v!/kBT5rE drW dv8 f̃ ~v8!@12gHC~rW,v,v8!#

~11!

and

UES~v!/kBT5rE drW dv8 f̃ ~v8!

3@12exp„2uES~rW,v,v8!/kBT…#

3gHC~rW,v,v8!. ~12!

As a final remark on the mean-field potential, we note t
the contribution from the hard-core component of the p
potential can be written as

UHC~v!/kBT5rE dv8Vex~v,v8! f̃ ~v8!, ~13!

whereVex(v,v8) is the orientation-dependent solute-solve
excluded volume. This is the same form of the potential t
appears in the self-consistent expression for the orientati
distribution function in the Onsager theory of the nemat
isotropic phase transition for a system of long hard rods@40#.
This is not surprising, since both theories consider the effe
of interactions of pairs of molecules while neglecting cor
lations due to three and more particles. Onsager’s theor
valid in the limit of very long rods, where the effects of the
higher order correlations are negligible. While the typic
nematogen and solute molecules do not satisfy this co
tion, Terzis and Photinos argued that neglecting solve
solvent interactions should have minor effects if the syst
is sufficiently far removed from the phase transition. Th
assumption can be tested by comparing the results of c
puter simulations and the theoretical predictions for solu
in nematic systems.

B. Emsley-Luckhurst „EL … theory

A theoretical model for describing the orientational orde
ing of solutes in a uniaxial nematic solvent has been de
oped by Emsley, Hashim and Luckhurst@39#. The approach
of this theory is closely related to that used in the Mai
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Saupe theory of nematic liquid crystals. A mean-field orie
tational potential is derived using some simplified model
the pair potential between solvent and solute molecules,
averaging over the magnitude and direction of the interm
lecular displacement, and over the orientation of the solv
molecules. The relationship between the mean-field and
potentials is given by

U~v1!5rE drW dv2u~rW,v1 ,v2! f̃ ~v2!g~rW !, ~14!

wherev1[(u1 ,f1) andv2[(u2 ,f2) are the polar angles
describing the orientation of the nematic director in the s
ute and solvent molecular frames, respectively. Also,rW is the
intermolecular displacement,r is the number density of the
solvent, u(rW,v1 ,v2) is the solvent-solute pair potentia
f̃ (v2) is the solvent orientational distribution function, an
g(rW) is the pair correlation function. The crucial approxim
tion of this theory involves neglecting the orientational co
relations between molecules, i.e.,g(rW,v1 ,v2)'g(rW).

Most applications of the Emsley-Luckhurst theory to t
analysis of experimental data have employed long-range
isotropic dispersion forces, though the incorporation of
electrostatic interaction between quadrupoles to the pair
tential has been discussed@17,18#. Below, we derive the
mean-field potential between quadrupoles for the case of
ally symmetric molecules.

The energy of two interacting axially symmetric quadr
pole moments may be written as@41#

uQQ~rW,v1 ,v2!5~4p!3/2A14
45 SQ2,0

~u!Q2,0
~v !

4pe0r
5 D

3 (
m1 ,m2 ,m

C~224;m1 ,m2 ,m!

3Y2,m1
~v1!Y2,m2

~v2!Y2,m* ~v!, ~15!

whereC(224;m1 ,m2 ,m) are Clebsch-Gordon coefficient
v[(u,f) describe the orientation of the intermolecular ve
tor in the frame of the nematic director, an
Q2,0
(a)5A5/4pQzz

(a) , where Qzz
(a) is the principal cartesian

component of the quadrupole moment tensor for the so
(a5u) and solvent (a5v). Substitution of Eq.~15! into Eq.
~14! yields

U~u!5
A280p

3
rSQzz

~u!Qzz
~v !

4pe0
D (
m1 ,m2 ,m

C~224;m1 ,m2 ,m!

3Y2,m1
~v1!^Y2,m2

&K Y4,m*

r 5 L , ~16!

where

^Y2,m2
&5E dv2 f̃ ~v2!Y2,m2

~v2!, ~17!

and where

K Y4,m*

r 5 L 5E Y4,m* ~v!

r 5
g~rW !r 2dr dv. ~18!
-
r
nd
-
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-
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In the case of axial symmetry considered here, Eq.~17! re-
duces to

^Y2,m2
&5S 5

4p D 1/2P̄2
~nem!dm2,0

, ~19!

where P̄2
(nem) is the second-rank nematic order paramet

while Eq. ~18! reduces to

K Y4,m*

r 5 L 56Apdm,0E P̄4
1~r !g~r !

r 3
dr, ~20!

whereP̄4
1(r ) is a fourth-rank order parameter describing t

orientation of the solvent-solute intermolecular displacem
at a distancer . Finally, substitution of Eqs.~19! and~20! into
Eq. ~16! yields

U~u!560prSQzz
~u!Qzz

~v !

4pe0
D P̄2

~nem!E P̄4
1~r !g~r !

r 3
dr

3P2~cosu!. ~21!

Noting that the form of the interaction between a quadrup
moment and an EFG is given by

U~u!52 1
2FZZQzzP2~cosu!, ~22!

Eq. ~21! can be used to define an average EFG:

F̄ZZ52120prQzz
~v !P̄2

~nem!E P̄4
1~r !g~r !

r 3
dr. ~23!

It is convenient to rewrite the expressions for the me
field potential and the average EFG in terms of dimensi
less quantities. We define a reduced mean-field poten
U* (u)[U(u)/kBT:

U* ~u!560pQu*Qv* r* S d3v0D E P̄4
1~r * !g~r * !

~r * !3
dr*

3P2~cosu!, ~24!

where Qa*5Qzz
(a)/A4pe0kBTd

5, r*5rv0, r *5r /d, v0 is
the solvent ellipsoid volume, and whered, the diameter of
the solvent ellipsoid, is used to fix the length scale in t
system. Further, we define a dimensionless EFG:

F̄ZZ* [
FZZd

5

uQzz
~v !u

52120pr* S d3v0D S Qzz
~v !

uQzz
~v !u D

3 P̄2
~nem!E P̄4

1~r * !g~r * !

~r * !3
dr* . ~25!

Finally, comparing Eqs.~24! and ~25!, we can write

U* ~u!52 1
2 F̄ZZ* uQv* uQu*P2~cosu!. ~26!

In the context of the theory presented above, an esse
requirement for the observation of a nonvanishing aver
EFG is a nonspherical distribution of solute-solvent interm
lecular vectors. If this distribution had spherical symmet
then the factor defined in Eq.~18! would vanish for all val-
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ues ofm, along with the magnitude of the EFG. This poi
was first noted by Emsley, Palke, and Shilstone who inc
porated this factor into the derivation of the contribution
the mean-field orientational potential from quadrupo
quadrupole interactions@18#. However, this derivation had
implicitly assumed the separability of averaging the pair p
tential over the magnitude and direction of the intermole
lar vectorrW:

K Y4,m*

r 5 L '^Y4,m* &^r25&; P̄4
1dm,0̂ r

25&. ~27!

However, the computer simulations of Emerson, Hash
and Luckhurst@42# indicate that the fourth-rank order param
eter P̄4

1 , which describes the nonsphericity of th
intermolecular-vector distribution, is strongly dependent
the molecular separationr , and therefore that the separabili
of the averaging in Eq.~27! is invalid. The mean-field po-
tential derived above for the quadrupole-quadrupole pair
tential differs from that derived originally by Emsley, Palk
and Shilstone by the use of Eq.~20! rather than Eq.~27! for
averaging over the intermolecular coordinates.

III. MC SIMULATIONS

The methods employed in the simulation of solutes in
nematic solvent are standard. The calculations were
formed at constant volume for a fixed number of partic
confined to a rectangular box subject to the usual perio
boundary conditions. The calculations used a system of
solvent particles plus one solute particle. Nematogens w
modeled as cylindrically symmetric hard ellipsoids with
axis ratio of 5:1. Solutes were also modeled as cylindrica
symmetric hard ellipsoids, though with a variety of sizes a
axis ratios. The solute lengths along the symmetry axisl ,
and diameter,w, are expressed in units of solvent widt
d. An equilibration period of~1–2!3105 trial moves per
particle was used, starting from an initial configurati
where all of the molecules were orientationally aligned a
positioned on a stretched fcc lattice.

The sequence of system configurations was generated
ing the Metropolis algorithm@43#. In some of the simula-
tions, only a hard-core pair interaction between molecu
was considered. In this case, trial orientational and tran
tional moves for each randomly chosen particle were rejec
if it resulted in overlap with any of the other particles, a
accepted if there was no overlap. However, most of the
culations involved systems of particles with an addition
interaction between point quadrupoles positioned at the c
ters of the ellipsoids. For such systems, the Metropolis a
rithm is applied as follows. Trial configurations are fir
tested for overlap. If particles overlap, then the configurat
is rejected. If the particles do not overlap, the quadrupo
quadrupole energy of the total system is calculated and c
pared to that of the previous configuration. IfDE,0, then
the move is accepted; ifDE.0, then the configuration is
accepted with a probability given bye2DE/kBT. The maxi-
mum displacements and rotations were chosen to contri
approximately equally to the likelihood that a particle mo
would be rejected, and to yield an overall acceptance rati
r-
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the range of 40–60 % in order to achieve equilibrium
rapidly as possible.

The solvent-solvent quadrupolar pair potential was cal
lated using the following relation for the interaction betwe
two axially symmetric quadrupoles@41#:

uQQ5
3

4 SQzz
~1!Qzz

~2!

4pe0r
5 D @125 cos2u125 cos2u212 cos2u12

135 cos2u1cos
2u2220 cosu1cosu2cosu12#, ~28!

whereu1 andu2 are the angles between the quadrupole sy
metry axis and the displacement vector between the p
quadrupoles, andu12 is the angle between the two quadr
pole symmetry axes. The contribution to the EFG at the
of the solute due to a solvent point quadrupole mom
Qmn
(v) was calculated using the following expression:

Fmn[¹mEn52¹m¹nf

5
1

r 5
@22Qmn

~v !110Qan
~v !r̂ a r̂m110Qma

~v ! r̂ a r̂ n

15Qab
~v !r̂ a r̂ bdmn235Qab

~v !r̂ a r̂ b r̂m r̂ n#, ~29!

where r̂ is a unit vector describing the orientation of th
displacement between the quadrupole pair, and where
have used the Einstein summation convention for repea
indices. The solute-solvent pair potential is a function of t
EFG due to the solvent:

uQQ52 1
3 QmnFmn52 1

3 Qab
~P!cosuamcosubnFmn , ~30!

whereQmn andQmn
(P) are the solute quadrupole moments

the laboratory and principal axis system~PAS! frames, re-
spectively, and cosuam is the angle between the PASa axis
and the laboratorym axis.

The total energy is obtained by summing the pair pot
tials over all of the particles in the system, and averag
over the sequence of configurations which are generate
the Metropolis algorithm. In certain cases for long-range
teractions it is necessary to include contributions to the to
energy from particles that are very widely spaced in orde
minimize truncation effects. For a finite-sized simulatio
system, this often requires a summation over molecule
repeated images of the system. However, this greatly
creases the time required to perform a simulation. In
present case, the quadrupole-quadrupole pair potential
cays asr25, which was found to be sufficiently rapid t
eliminate the need to perform such a lattice summation. T
energy of a single molecule was calculated by summing o
the pair potentials between it and all other molecules wit
a radius given by half the smallest dimension of the sam
cell. For a density ofr*50.42, this corresponds to a distan
of r54.96d, where d is the width of a solvent ellipsoid
When this maximum distance was doubled, the calcula
energy of the system and of each of the molecules, and
EFG sampled by the solute, was found to change by,1%
for each of several different system configurations. In ad
tion ensemble averages of various quantities of interest w
not affected by increasing the sampling range.
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Most of the simulations for the quadrupolar systems w
performed atQv*52A2.5 andr*50.42. The choice ofQv*
falls at the lower end of a range of values (uQv* u' 0.75–4.0!
suitable forT5300 K andd'5 Å using the results of a
study which employed a simple atom-dipole method for
proximating the quadrupole moment for rigid conformers
various real nematogens@19#. The use of higher values o
Qv* was found to promote the formation of a smectic pha
in the model system and was therefore avoided. Note tha
neglect the axial asymmetry of theQab

(v) tensor present in rea
molecules.

The nematic order parameterP̄2
~nem! was determined by

calculating the largest eigenvalue of the following matrix

^Q&5
1

N (
i51

N

^ 3
2 ûi ûi2

1
2 I &, ~31!

whereN is the number of solvent molecules, andûi is a unit
vector describing the orientation of thei th solvent molecule.
The bracketŝ & denote an ensemble averaging over the
quence of configurations generated by the MC Markov p
cess. The nematic director is given by the eigenvector co
sponding to this eigenvalue. In addition to the nematic or
parameter, the following functions were also calculated:

~i! The solvent orientational distribution functionf̃ (u).
~ii ! The solvent-solvent pair correlation functio

gvv(r * ).
~iii ! The second-rank solvent-solvent orientational cor

lation functionP̄2
(vv)(r * ) defined as follows:

P̄2
~vv !~r * !5

1

N~N21! (
iÞ j

N

^P2~cosu i j !&, ~32!

whereu i j is the angle between solvent ellipsoidsi and j .
~iv! The solute orientational order parameterP̄2 .
~v! The solute orientational distribution functionf (u).
~vi! The average EFG tensor at the center of the sol

F̄ab, in the frame of the nematic director.
~vii ! The solute-solvent radial distribution functio

guv(r * ).
~viii ! The solute-solvent orientational correlation functi

P̄2
(uv)(r * ), defined in a manner analogous to that f

P̄2
(vv)(r * ) above.
~ix! The fourth-rank orientational order parameter for t

distribution of solute-solvent intermolecular displaceme
P̄4

1(r * ).
All of the measured quantities described above were

culated by averaging over typically~8–9!3105 configura-
tions. In order to calculate properly all quantities that a
measured with respect to the nematic director, which und
goes orientational fluctuations over the course of a sim
tion, the director was recalculated after every 101–102 at-
tempted moves per particle. All calculated quantities wh
are functions of orientation with respect to the director w
calculated for cosu in the range 0 – 1 in increments of 0.0
Further, the quantities which depend on the intermolecu
separationr were calculated to a distance of half the min
mum dimension of the sample cell~e.g., 4.96d for
r*50.42! in increments of 0.05d. Solute and solvent orien
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tational order parameters and EFG tensor components w
calculated in 80–90 block averages of 104 sweeps through
the system. The fluctuations of these averages were use
provide an estimate of the uncertainties of these quantitie

IV. RESULTS AND DISCUSSION

A. Hard-core system

Orientational distribution functions for four different sol
utes were calculated for two different densities for a syste
employing only hard-core interactions. The MC distribution
are shown in Figs. 1 and 2. The corresponding second-r
solute orientational order parameters are listed in Table
The variation of the distributions with solute shape and s
vent density is similar to that observed in our previous M
simulation study@33#. Increasing the length of the solut
results in an increase in the degree of orientational orderi
This is evident in Fig. 2, which shows distributions for so
utes with dimensions ofl55.0 andw51.0, andl52.0 and
w51.0. Further, increasing the solvent density, and theref
the degree of solvent orientational order, leads to a cor
sponding increase in solute orientational order. Note that
oblate solute with dimensions ofl50.65 andw51.0 prefers
to orient with its symmetry axis perpendicular to the nema
director, resulting in a distribution maximum atu590° and a
negative order parameter.

We use the results of these simulations to test the pred
tions of the TP theory, assuming that the mean-field poten
is due to hard body interactions given by Eq.~11! or equiva-
lently by Eq. ~13!. The orientation-dependent excluded vo
umeVex(v,v8), which for axially symmetric ellipsoids is a
function of only the angle between the symmetry axes, w
calculated through a numerical integration over the mag

FIG. 1. Calculated and theoretical solute orientational distrib
tion functions for hard-core systems~I!. MC data ~squares! and
predictions from TP theory using Eq.~13! ~dashed line! and Eq.
~33! ~solid line!.
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4328 55JAMES M. POLSON AND E. ELLIOTT BURNELL
tude and direction of the solute-solvent intermolecular ve
tor. The results for the case of identical 5:1 ellipsoids wer
consistent with those reported by Tjipto-Margo and Evan
@44#. Note that the potential of Eqs.~11! and ~13! is ex-
pressed in terms of the solvent orientational distributio
function f̃ (v). Thus, in order to calculate the solute distri
bution, we use the solvent distribution calculated in the M
simulation. Also note that in the study of Terzis and Phot
nos, the mean-field potentials were rewritten in terms of th
solvent order parametersP̄2

(nem) and P̄4
(nem), with higher or-

der contributions neglected. The values of these quantit
had not been reported previously, and thus had to be e
mated; values were chosen in order to yield calculated ord

FIG. 2. Calculated and theoretical solute orientational distribu
tion functions for hard-core systems~II !. MC data ~squares! and
predictions from TP theory using Eq.~13! ~dashed line! and Eq.
~33! ~solid line!.
-
e
,

n

-
e

es
ti-
er

parameters to be consistent with experimentally measu
order parameters for several molecules. Clearly, the
technique provides a superior method to test the approxi
tions of the theory.

The calculated theoretical distribution functions a
shown as the dashed curves overlaid on the plots of the
distributions in Figs. 1 and 2 for the four different solutes
densities ofr*50.388 and 0.44. In all cases the TP theo
drastically underestimates the degree of orientational o
observed in these hard-core systems. This contrast is fur
illustrated by comparing the theoretical and calculated s
ond rank order parametersP̄2 in Table I. A notable case is
that of the solute which is identical to the solvent partic
( l55, andw51!. In this case, the MC orientational distribu
tion function of the solute is identical to the solvent distrib
tion which was used in the calculation of the theoretical s
ute distribution function; thus the very poor agreeme
between theory and simulation highlights the lack of inter
self-consistency of the theory. Clearly, the hard-core com
nent of the TP mean-field potential given by Eq.~11! gives
an inadequate description of orientational ordering for ha
core systems.

The flaw in the TP theory must be due to the approxim
tion of neglecting solvent-solvent correlations, which is e
pressed in Eq.~2!. This is not a surprising finding given th
high density of the nematic phase, coupled with the sh
range nature of the interaction. It is analogous to the p
quantitative predictions of Onsager theory, which accou
for only two-particle correlations, when applied to hard pa
ticles of realistic length-width ratios. In the study by Tjipto
Margo and Evans@44#, an additional term involving the third
virial coefficient ~which accounts for three-body correla
tions! in the expression for the free energy for a system
hard ellipsoids with a dimension ratio of 5:1 was include
this approach yielded an adequate quantitative descriptio
nematogen ordering. Similarly, the TP theory requires
more careful treatment of many-particle correlations, beyo
the consideration of solute-solvent effects alone, in orde
provide a reasonable description of solute orientational
havior. Such a modification, however, may be difficult
incorporate into the framework of the theory.

-

TABLE I. MC and theoretical solute order parameters for a hard-core system.

r* l a w a P̄2 ~MC! P̄2 ~Th. I! b P̄2 ~Th. II! c q d P̄2
~nem!

0.388 0.65 1.0 20.05~1! 20.03 20.05 1.8 0.627~4!

2.0 1.0 0.24~1! 0.08 0.24 2.8 0.626~4!

2.0 0.5 0.23~1! 0.08 0.24 2.6 0.629~4!

5.0 1.0 0.63~1! 0.31 0.61 2.1 0.626~4!

0.44 0.65 1.0 20.13~1! 20.04 20.12 3.2 0.814~4!

2.0 1.0 0.50~1! 0.12 0.48 3.9 0.811~4!

2.0 0.5 0.34~1! 0.12 0.34 2.5 0.810~4!

5.0 1.0 0.81~1! 0.46 0.80 2.3 0.811~4!

aUnits of solvent ellipsoid widthd.
bCalculated using Eq.~11!.
cCalculated using Eq.~33!.
dFactor appearing in Eq.~33!.



ry

n
ti
la
ta
ha
th

po
no
p
an
a
th

te
wa
ut

s
er
th
et
n
b
-
e
na
t t
m
or
o
w
a

or
q

ec
r
t
ck
c-
n

u
e
d
n
a

r
t
c
a
d

lute
sen
of

d
ove
, the
ns
tive
po-

ole
re-

th
as

are
cal
f
ten-

to

s

t

is in
ur-

of

the

m-
o-

tial
he
ion
us a
mo-
nds

55 4329MONTE CARLO SIMULATIONS OF SOLUTE ORDERING . . .
A simple alternative approach to improving the TP theo
was provided in a recent study by Terziset al. @45#. In this
study, the TP theory was used to analyze the orientatio
ordering of a series of cyclic aliphatic solutes in a nema
solvent. The principal advantage of using these particu
solutes is that they have essentially vanishing electros
multipole moments, and thus the principal ordering mec
nism should be the short-range anisotropic component of
solute-solvent pair potential. Thus Eq.~11! @or, equivalently,
Eq. ~13!# was used as the theoretical solute mean-field
tential. Note that the solvent orientational distribution can
be determined from the NMR experiments, and thus the
tential was rewritten in terms of a spherical harmonic exp
sion, with solvent order parameters constituting the exp
sion coefficients, which was truncated to second rank. In
analysis, the parameterp[rv P̄2

(nem), wherev is the volume
of the nematogen, was treated as an adustable parame
order to fit the solute order parameters. As expected, it
found thatp was independent of the properties of the sol
~to within 10%!. In addition, it was found thatp actually
exceeded unity over a significant temperature range, a re
that is clearly forbidden by the definition of this paramet
This result is clearly a consequence of neglecting
solvent-solvent correlations in the derivation of the theor
cal potential. Further, it was suggested that the effect of
glecting the solvent-solvent correlations in the theory can
compensated for by consideringv to be an effective nemato
gen volume, which is clearly larger than the true volum
The usefulness of the theory for predicting the orientatio
behavior of solutes was supported by the observation tha
value of p was roughly solute independent at a fixed te
perature for a particular nematic solvent. Thus the the
should predict the orientational behavior of an arbitrary s
ute, if the order parameters of any one solute are kno
under the assumption that short-range repulsive forces
the dominant orienting mechanism.

We have analyzed further our results for the hard-c
system by employing a modified form of the potential of E
~13! given by the following equation:

UHC~v!/kBT5qrE dv8Vex~v,v8! f̃ ~v8!, ~33!

whereq is a factor introduced to compensate for the negl
of solvent-solvent correlations, related to the parametep
described above. Specifically, it can be considered to be
ratio of an effective solvent packing fraction to the true pa
ing fraction. The new fits of the MC solute distribution fun
tions are shown as the solid curves in Figs. 1 and 2. Cha
ing the packing fraction through the optimization ofq clearly
results in a dramatically improved prediction of the distrib
tion functions. This is also clear from the values of the ord
parameters which correspond to these fits, which are liste
Table I. The fitted values ofq are also shown in the table. I
all cases, it was found that the effective packing fraction w
significantly greater than the true packing fraction~i.e., q.
1!, a result which is consistent with the results of the expe
mental study by Terziset al. @45#. We note, however, tha
the range of values of the effective packing fraction for ea
density for the four solutes varies more widely than w
found in that study where the deviations among solutes
al
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not exceed 10%. This may be due to the fact that the so
shapes used in the MC simulations of this study were cho
to be significantly different, while those used in the study
Terziset al.were~necessarily! structurally similar. It is also
possible that molecular flexibility of both the solvent an
solute molecules of the experimental system may impr
the consistency of the fits among the solutes. In any case
magnitude of the variations in the effective packing fractio
observed in the present study suggest that the predic
power of the hard-core component of the TP mean-field
tential may be limited.

B. Quadrupolar systems

Table II lists theP̄2 and F̄ZZ* calculated for simulations
employing a wide variety of solute shapes and quadrup
moments. The nematic solvent was characterized by a
duced density ofr*50.42, and by quadrupole moments wi
values ofQv*52A2.5. The nematic order parameter w
found to beP̄2

(nem)50.7660.01, with some minor variations
between systems with different solutes; specific values
listed in Table II. Further, the table shows the theoreti
F̄ZZ* calculated using Eq.~25! and theoretical predictions o
P̄2 for spherical solutes using the reduced mean-field po
tial of Eq. ~26! of the EL theory. Note thatF̄ZZ* calculated in
both the MC simulations and by EL theory is proportional
Qzz
(v) @see Eqs.~25! and~29!#. Thus the sign ofF̄ZZ* is deter-

mined by the sign ofQzz
(v) , which in the present calculation

was taken to beQzz
(v),0. Using a positive value ofQzz

(v)

simply reverses the sign ofF̄ZZ* but otherwise has no effec
on the calculated quantities.

The most striking result is the strong dependence ofF̄ZZ*
on the shape and quadrupole moment of the solute. This
contrast to the solute-independent model put forward by B
nell and co-workers. For the case of spherical solutes,F̄ZZ*
increases in magnitude for increasinguQu* u, though it is ap-
proximately symmetric with respect to changing the sign
Qu* , since the sign ofF̄ZZ* is consistently positive. This is
clearly not the case for the nonspherical solutes where
shape anisotropy breaks the symmetry andF̄ZZ* undergoes
concomitant change in sign withQu* . Thus, for the oblate
solute, F̄ZZ* ,0 for Qu*Qv*,0, and F̄ZZ* .0 for Qu*Qv*.0.
The trend is the reverse for the various prolate solutes.

The dependence ofF̄ZZ* onQu* is qualitatively consistent
with the behavior of the measured orientational order para
etersP̄2 in the context of a mean-field EFG-quadrupole m
ment interaction given by Eqs.~22! or ~26!. In the case of the
spherical solutes, the consistently positiveF̄ZZ* is predicted
successfully by Eq.~26! to give P̄2.0 for Qu*.0 and
P̄2,0 for Qu*,0 ~for the present case whereQv*,0). This
is also consistent with the expected behavior ofP̄2 based on
a consideration of the quadrupole-quadrupole pair poten
alone. For axially symmetric quadrupole moments of t
same sign, the minimum energy orientational configurat
is a perpendicular arrangement of the symmetry axes; th
negative order parameter is expected. For quadrupole
ments of opposite signs, a parallel configuration correspo
to the lowest energy, and thus a positiveP̄2 is predicted.
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TABLE II. EFG and order parameters for several solutes atr*50.42 and (Qv* )
252.5.

Shape Dimensions Qu*Qv*
a F̄ZZ* ~MC! a F̄ZZ* ~Th! b P̄2 ~MC! P̄2 ~Th! c P̄2

(nem)

Spherical l51.0 22.5 1.8~2! 1.5 0.26~2! 0.50 0.749~3!

w51.0 22.0 1.0~1! 0.9 0.15~2! 0.19 0.750~3!

21.5 0.5~1! 0.5 0.07~1! 0.08 0.761~2!

0.0 0.05~3! 0.15 0.01~1! 0.0 0.751~3!

1.5 0.5~1! 0.4 20.03~2! 20.05 0.756~2!

2.0 1.4~1! 1.4 20.10~2! 20.22 0.756~2!

2.5 2.2 ~2! 2.4 20.16~2! 20.32 0.758~2!

Spherical l50.75 21.5 3.8~2! 3.9 0.29~2! 0.59 0.757~2!

w50.75 21.0 1.1~1! 1.1 0.09~1! 0.12 0.754~2!

0.0 0.04~3! 0.07 0.01~1! 0.0 0.761~2!

1.0 1.8~1! 1.7 20.06~1! 20.14 0.757~2!

1.5 5.4~3! 4.9 20.19~2! 20.36 0.757~2!

Oblate l50.65 21.5 20.8 ~1! 20.9 20.11~1! 0.759~2!

w51.0 20.75 20.32~4! 20.39 20.12~1! 0.751~2!

0.0 20.01~3! 20.05 20.09~1! 0.756~2!

0.75 2.1~1! 2.0 20.14~1! 0.761~2!

1.5 11.8~4! 15.5 20.37~2! 0.752~2!

Prolate l52.0 22.5 2.7 ~1! 3.0 0.56~2! 0.762~2!

w51.0 21.5 1.0 ~1! 1.0 0.39~3! 0.758~2!

0.0 20.01~3! 20.02 0.30~2! 0.753~2!

1.5 20.39~3! 20.39 0.37~2! 0.768~2!

2.5 20.66~4! 20.70 0.40~2! 0.761~2!

Prolate l53.0 22.5 2.9~1! 3.0 0.67~2! 0.761~2!

w51.0 0.0 0.00~3! 0.08 0.55~2! 0.756~3!

2.5 21.03~4! 21.36 0.66~2! 0.763~2!

Prolate l54.0 22.5 3.3~2! 4.0 0.74~2! 0.760~2!

w51.0 0.0 0.01~3! 0.01 0.66~2! 0.761~2!

2.5 21.1~1! 21.2 0.73~2! 0.762~3!

Prolate l55.0 22.5 3.5 ~1! 4.6 0.81~1! 0.768~2!

w51.0 0.0 20.04~3! 20.14 0.80~1! 0.772~2!

2.5 21.16~5! 21.50 0.78~2! 0.763~2!

aCalculated usingQzz
(v)52A2.5,0; usingQzz

(v)51A2.5.0 simply reverses the sign ofF̄ZZ* .
bCalculated using Eq.~25!.
cCalculated using Eq.~26!.
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The asymmetry ofF̄ZZ* for the nonspherical solutes is als
consistent with the behavior of the calculated orientatio
order parametersP̄2, referenced with respect to the system
with Qu*50. For the case of the oblate solute, the nega
P̄2 is enhanced by the positiveF̄ZZ* , which is present for
Qu*Qv*.0. Again, this is consistent with the expectatio
based on the orientation dependence of the quadrup
quadrupole pair potential. However, a somewhat surpris
result is the~minor! enhancement of the negativeP̄2 for the
case of opposite signs of solvent and solute quadrupole
ments, where the lowest pair potential energy configura
corresponds to a parallel arrangement of the quadru
symmetry axes. While the corresponding case for spher
solutes gave rise to an alignment of the solute symmetry
l

e

le-
g

o-
n
le
al
is

along the nematic director, the nature of the shape anisotr
for the oblate solute appears to frustrate that outcome.

The analogous situation is present for the various pro
solutes. In this case, the expected enhancement of the
tive value of P̄2, relative to the case ofQu*50, for
Qu*Qv*,0 is observed, as well as an unexpected enhan
ment of P̄2 for Qu*Qv*.0. Again, the increase in solute or
entational ordering withuQu*Qv* u, regardless of the sign o
Qu*Qv* , is consistent with the change in sign ofF̄ZZ* .

In the case of the large prolate solute, with dimensio
equal to those of the solvent ellipsoids (l55.0, w51.0!,
F̄ZZ* has a similar dependence onQu*Qv* relative to the case
of the smaller prolate ellipsoid. Note, however, that the o
entational ordering is not significantly affected by the deta
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of the electrostatic interactions. Thus orientational order
of highly elongated particles in a dense nematic phase
pears to be dominated by entropic considerations, in kee
with the belief that molecular shape anisotropy, in conju
tion with short-range repulsive forces, is the dominant ord
ing mechanism for nematogens.

The full orientational distribution functions for three so
utes are plotted forQu*Qv*50,62.5 or 0,61.5 in Fig. 3. The
trends present in the behavior of theP̄2 for each of the sol-
utes is mirrored by the behavior of the distributions. Only
the case of the spherical solute is the orientational orde
consistent with an interaction between the solute quadru
moment and aF̄ZZ* of a constant sign. The behavior of th
solute-solvent orientational correlation functionsP̄2

(uv)(r * )
for the same solutes, shown in Fig. 4, provides some a
tional insight into the perturbing influence of the quadrupo
quadrupole pair interactions on the ordering of the solu
Note that in the limit ofr *→`, P̄2

(uv)(r * )5 P̄2P̄2
(nem). Thus

the long-range limit of these functions provides a measur
the degree of solute orientational order. For all cases, ex
that of the spherical solute withQu*50, there are both short
and long-range orientational correlations. In the case of
spherical solute, both long- and short-range correlations h
the same pattern: enhancement of parallel configurations
solute and solvent quadrupole moments of the opposite s
and enhancement of perpendicular configurations for qu
rupole moments of the same sign. Note that the short-ra
correlations are indeed very short range, as they va
within approximately one solvent ellipsoid widthd from the
nearest approach distance.

The case of the prolate solute is more interesting. Wh
oppositely signed solute and solvent quadrupole mom
correspond to an enhancement of both short- and long-ra
parallel configurations, quadrupole moments of the sa

FIG. 3. Solute orientational distribution functions at (Qv* )
2

52.5 andr*50.42.
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sign lead to a slight enhancement of long-range parallel co
figurations, but a significant reduction of short-range paral
configurations. The latter feature is more in keeping wi
expectations based on the orientation-dependence of
quadrupole-quadrupole pair potential. In the case of the o
late solute, there is no noticeable effect of the quadrupo
quadrupole pair potential on the short-range orientation
correlations.

Figure 5 illustrates the effect of increasing solute leng
on the order parameterP̄2 for three different values of the
solute quadrupole moment:Qu*Qv*50, 62.5. The width of
all of the solutes is fixed to that of the solvent,w51. The
increase in the degree of orientational ordering with increa
ing length, regardless of the value of the quadrupole m
ment, is clear. The unexpected enhancement of orientatio
ordering described above for prolate solutes wi
Qu*Qv*512.5 relative to the case whereQu*Qv*50 is also

FIG. 4. Solute-solvent orientational correlation functions fo
(Qv* )

252.5 andr*50.42.

FIG. 5. Solute orientational order parameter vs solute leng
with w51.0.Qv*Qu*522.5 ~triangles!, 0.0 ~squares!, and 2.5~pen-
tagons!.
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TABLE III. Experimental order parameters for three solutes.

Solute Qzz
a P̄2

b

EBBA c 55%d 1132e

dideuterium 0.649 20.009 65 20.000 82 0.007 31
benzene 27.8~2.2! f 20.1157 20.1756 20.2519
hexafluorobenzene 9.5g 20.3144 20.2280 20.2144
acetylene 5.5~2.5!h 20.0585 0.1123 0.1912

aUnits of 10226 esu cm2.
bFrom Ref.@12#.
cF̄ZZ526.4231011 esu for D2.
dF̄ZZ50.0 esu for D2.
eF̄ZZ56.0731011 esu for D2.
fAverage value of those reported in Refs.@47# and @48#.
gFrom Ref.@49#.
hAverage value of those reported in Refs.@50# and @51#.
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evident. Finally, it is interesting to note that the effects of t
quadrupolar interactions on solute ordering gradually dim
ish as the dimensions of the solute approach those of
nematogen. Clearly, the effects of the hard-core interact
increasingly dominate the ordering with increasing shape
isotropy. In the case where the solvent and solute dimens
are identical, the quadrupolar interactions have a neglig
influence.

At this point, it is instructive to compare qualitatively th
results of the simulations with certain previous experimen
results. Table III lists the values ofP̄2 for D2, benzene,
hexafluorobenzene, and acetylene measured in three diffe
liquid crystals. The EFG has been measured for D2 and HD
in these nematics and was found to be positive for Me
ZLI 1132, zero for the 55 wt % ZLI 1132–EBBA mixture
and negative for EBBA@8,46#. Further, benzene is known t
have a large negative quadrupole moment, while hexafl
robenzene has a large positive value; approximate value
listed in the table. The magnitude of the negative value
P̄2 for benzene was found to increase with increasingF̄ZZ ,
while the opposite trend was observed for hexafluorob
zene. This behavior can be explained by the interaction
the molecular quadrupole moments interacting with an ex
nal F̄ZZ which has a sign that isconsistentwith that mea-
sured by molecular hydrogen for the three nematics. T
values of orientational order parameters of acetylene are
wise consistent with this solute-independent mean-field p
diction. In particular, note the negative value ofP̄2 for acety-
lene in EBBA, a feature which is not easily rationalize
except by an interaction between its positiveQzz with a
negativeF̄ZZ . Further, note that benzene and hexafluorob
zene have approximately the same shape, despite the
difference in quadrupole moments. Thus the differences
P̄2 for the two molecules in the same liquid crystal like
arise principally from the difference in quadrupole momen
Again, the trend is consistent with a mean-field interact
between a quadrupole moment and aF̄ZZ with a sign which
is independent of the soluteQzz: the magnitude of the nega
tive P̄2 is enhanced forQzzF̄ZZ,0, and reduced for
QzzF̄ZZ.0, where, again, we use values ofF̄ZZ measured
using D2. The slightly larger magnitude ofP̄2 of hexafluo-
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n

robenzene in the 55% mixture~whereF̄ZZ50), compared to
that of benzene, is probably due to the fact that hexafl
robenzene is slightly more oblate than benzene. To sum
rize, certain key experimental results strongly suggest
molecules of very different shapes and quadrupole mom
interact with an averageF̄ZZ which, at the very least, has th
same sign.

Clearly, the experimental results conflict with the resu
of the present MC simulations, which employ the simp
quadrupole-quadrupole potential to approximate the elec
static interaction between molecules. As stated earlier,
example, the oblate solute in the simulations samples an
erageF̄ZZ whose sign was directly proportional to the sign
the soluteQu* which was further manifested in an enhanc
ment of uP̄2u for increasinguQu*Qv* u relative to the case o
Qu*50 independent of the sign ofQu*Qv* . At this time, we
cannot pinpoint precisely the origin of this sharply contrad
tory behavior, but it is very likely a result of using such
highly simplified form for the electrostatic pair potential. A
short range, the convergence of the multipole expansio
very slow. Thus, in dense systems, an interaction betw
point quadrupoles may be a very poor approximation, a
produce the kind of artifacts observed here with very spec
molecular shapes and forms of electrostatic interactions
significantly improved model of electrostatic interactio
may be required to reproduce the qualitative trends obse
in experimental studies. This consideration is important w
regard to any theory of solute orientational order which u
such a simplified model for the pair potential.

The EL theory has been applied to analyze the pres
results. Equations~25! and~26! were used to calculate value
of F̄ZZ* and P̄2. However, note that the calculation of the
averages requiresP̄2

(nem), guv(r * ), and P̄4
1(r * ), quantities

which also must be calculated in the MC simulations. Th
the ‘‘theory’’ simply provides a prediction of the relationsh
between various quantities that may be measured for the
tem, rather than a theory which requires exclusively exter
system parameters. Thus, it is not of a form which may
used to study real nematic systems using NMR spectrosc
for example, sinceguv(r * ) and P̄4

1(r * ) are not measurable
with this technique.
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The results of the predictions ofF̄ZZ* and P̄2 are summa-
rized in Table II along with the values measured in the M
simulations. Note thatP̄2 can only be calculated for spheri-
cal solutes, since the nonspherical solutes experience an
ditional orienting mechanism due to the shape anisotro
coupled with the short-range repulsive forces. The theore
cal predictions ofF̄ZZ* are consistently good for all solute
shapes and quadrupole moments. This is true for both
signs and magnitudes ofF̄ZZ* . Considering this point, we

FIG. 6. Solute-solvent distribution functions for solute with di
mensions ofl52.0 andw51.0 atr*50.42 and (Qv* )

252.5.

FIG. 7. Solute-solvent distribution functions for solute with di
mensions ofl55.0 andw51.0 atr*50.42 and (Qv* )

252.5.
ad-
y
ti-

he

may gain some insight into the dependence ofF̄ZZ* on solute
properties by investigating more closely the results in
context of the theory.

In Figs. 6 and 7 we show the three solvent-solute p
distribution functions guv(r * ), P̄4

1(r * ), and
P̄4

1(r * )g(r * )(r * )23. Note that both the mean-field potenti
U* (u) @Eq. ~24!# and F̄ZZ* @Eq. ~25!# are directly propor-
tional to the latter function. Figure 6 shows the distributi
functions for a prolate solute (l52, w51! for
Qu*Qv*50,62.5. For a zero quadrupole moment, there
only a vague shell structure visible inguv(r * ), while there is
a very strong enhancement in minimum-distance positio
correlation forQu*Qv*522.5 and a smaller enhancement
Qu*Qv*52.5. The strong peak forQu*Qv*522.5 is consistent
with a strong minimum in the quadrupole-quadrupole p
potential for parallel configurations between axially symm
ric quadrupoles of opposite signs. TheP̄4

1(r * ) distribution
also undergoes noticeable changes with varyingQu*Qv* : in-
creasingQu*Qv* results in a decrease in the minimum
distance positive peak and a deepening of the nega
‘‘well’’ to the right of this peak. These effects result in sig
nificantly different P̄4

1(r * )guv(r * )(r * )
23 functions.

Clearly, integration of the functions results in aF̄ZZ* .0 for
Qu*Qv*522.5, F̄ZZ* ,0 for Qu*Qv*52.5, and a near-
vanishing F̄ZZ* for Qu*Qv*50.0. The results for the longe
prolate ellipsoid (l55, w51!, shown in Fig. 7, are virtually
identical. Thus changes in theF̄ZZ* arise from changes in the
structure of the solvent in the vicinity of the solute as a res
of changes in the solute properties.

The theoretical predictions ofP̄2 for the spherical solutes
listed in Table II are generally poor, and deviate from t
measured values typically by a factor of 2. This result
somewhat surprising given the accuracy of the calcula
F̄ZZ* , whose theoretical expression@Eq. ~25!# is defined by
the mean-field potential@Eq. ~26!# which is used to calculate
P̄2. At the very least, however, the signs of the order para
eters are accurately predicted. A comparison of the ca

FIG. 8. MC and theoretical orientational distribution functio
for spherical solutes with (Qv* )

252.5 andr*50.42.
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TABLE IV. EFG and order parameters for several solutes atr*50.39 and (Qv* )
252.5.

Shape Dimensions Qu*Qv*
a F̄ZZ* ~MC! a F̄ZZ* ~Th! b P̄2 ~MC! P̄2 ~Th! c P̄2

(nem)

Spherical l51.0 22.5 1.8~1! 1.2 0.26~2! 0.34 0.637~4!

w51.0 21.5 0.29~5! 0.29 0.04~2! 0.04 0.645~4!

0.0 0.04~3! 0.05 0.01~1! 0.0 0.641~6!

1.5 0.43~6! 0.35 20.01~1! 20.05 0.622~7!

2.5 1.5~2! 1.5 20.09~2! 20.18 0.636~4!

Prolate l52.0 22.5 2.0~1! 1.1 0.44~2! 0.638~4!

w51.0 21.5 0.63~5! 0.45 0.30~2! 0.636~4!

0.0 0.01~2! 0.06 0.23~2! 0.639~4!

1.5 20.33~3! 20.21 0.25~2! 0.657~5!

2.5 20.48~4! 20.30 0.29~2! 0.635~2!

aCalculated usingQzz
(v)52A2.5,0; usingQzz

(v)51A2.5.0 simply reverses the sign ofF̄ZZ* .
bCalculated using Eq.~25!.
cCalculated using Eq.~26!.
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lated and theoretical solute orientational distribution funct
for one spherical solute (l5w51) is shown in Fig. 8. Note
that the accuracy of the predicted curves appears to
poorer, as the magnitude of the solute quadrupole mom
increases. This discrepancy between the degree of orie
tional ordering calculated in theory and simulation sugge
that the mathematical approximations employed in the
theory may be too severe to yield a useful and accu
theory for solute orientational order. It is because of th
approximations, which also affect the solvent orientatio
order, that the solvent field gradient becomes the lead
electrostatic contribution. Changing the approximations w
change the form of the mean field. Given that the theoret
predictions are slightly better for weaker solute-solvent c
plings for the systems studied here, it could be argued
the theory is more accurate in the limit of small solute qu
rupole moments. It is interesting to note that in the case o
2 and HD, the only solutes for which the average EFG a
order parameter can be simultaneously measured experi
tally, the mean-field model gives excellent predictions of
measuredP̄2. Perhaps it is significant that the solute quad
pole moments for these molecules are very small, in keep
with this argument. Unfortunately, it is very difficult to te
this hypothesis using MC simulations for solutes with ve
weak quadrupoles: the statistical fluctuations of the meas
n
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F̄ZZ* and P̄2 rapidly become very large relative to their ave
age values, a feature that greatly increases the statistica
certainties of these averaged quantities.

To investigate further the details of solute orientation
behavior in a nematic solvent, we have conducted simu
tions for solutes in a nematic solvent at a lower density, a
therefore, with a lower degree of orientational order. Ta
IV presents results for the EFG and order parameters
spherical and prolate solutes with a variety of quadrup
moments oriented in a solvent at a reduced den
r*50.39, and with an order parameter ofP̄2

(nem)50.64
60.01. As expected, there is a significant reduction in b
F̄ZZ* and P̄2 as a result of the decrease of the degree
nematic ordering; otherwise, there is no qualitative diffe
ence with the results for the systems atr*50.42.

Finally, we consider the effects of solvent-solvent cor
lations on the behavior of solute average properties. Ear
it was shown that the TP theory drastically underestima
the degree of solute orientational order in hard-core syste
The cause of this problem was the severity of the appro
mation neglecting solvent-solvent correlations induced
the solvent-solvent hard-body interaction. A considerat
which is related to that result concerns the importance of
solvent-solvent correlations on the solute properties wh
ween
TABLE V. Comparison of MC results with and without quadrupole-quadrupole interactions bet
solvent ellipsoids.

Qv* –Qv* off
a Qv* –Qv* on

b

Dimensions Qu*Qv*
c F̄ZZ* P̄2 P̄2

(nem) F̄ZZ* P̄2 P̄2
(nem)

l51, w51 2.5 2.6~2! 20.16~2! 0.764~2! 2.2~2! 20.16~2! 0.758~2!

l52, w51 2.5 21.03~5! 0.49~2! 0.766~2! 20.66~4! 0.40~2! 0.761~2!

l52, w51 0.0 0.07~3! 0.32~2! 0.765~2! 20.01~3! 0.29~2! 0.763~2!

aSolvent-solvent quadrupole interactions turned off.
bSolvent-solvent quadrupole interactions turned on;Qv*52A2.5.
cQu*Qv* gives the solute-solvent interaction strength.
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result from the solvent-solvent electrostatic interactions.
have investigated this point by performing simulations
which solvent and solute interact both via hard-core a
quadrupole-quadrupole interactions, but where solvent
ticles interact only with a hard-core pair potential. A com
parison of the results of average solute properties with
corresponding results, where all interactions have been p
erly included, may provide some insight into this matter.

In Table V, we present the calculated values forF̄ZZ* and
P̄2 for three solutes with and without the solvent quadrupo
quadrupole interaction turned on. In the case of the sphe
solute, there is a small difference inF̄ZZ* and no change in
P̄2. However, for the prolate solute withQu*Þ0, there is a
significant variation in bothF̄ZZ* and P̄2. The difference is
reduced by settingQu*50 for a solute with the same shap
Thus it appears that solvent-solvent correlations induced
solvent-solvent electrostatic interactions can indirectly aff
solute properties, though in a way that clearly depends on
properties of the solute. Note that these differences do
arise from a change in the nematic order parameter: as sh
in Table V, P̄2

(nem) is not significantly affected by the pres
ence of solvent quadrupole-quadrupole interactions of
magnitude considered here. Nevertheless, there is a sig
cant difference in the structure of the solvent between
hard-core and the hard-core plus quadrupole systems.
difference is manifest in the solvent-solvent pair distributi
and orientational correlation functions shown in Fig. 9.

V. CONCLUSIONS

In this paper, we have presented a MC simulation stud
the combined effects of shape anisotropy and one spe
electrostatic interaction on the orientational order of solu
in a nematic solvent. Solute and solvent molecules were c
structed using a minimal model to describe pair interactio
Anisotropic short-range repulsive forces were approxima
by using a hard-core potential, with axially symmetric elli

FIG. 9. Comparison of solvent-solvent pair distribution and o
entational correlation functions for (Qv* )

250 and 2.5 atr*50.42.
e

d
r-

e
p-

-
al

y
t
he
ot
wn

e
ifi-
e
his

f
fic
s
n-
s.
d

soids of rotation to describe the molecular shapes. Elec
static effects were studied by incorporating an interact
between point quadrupoles embedded in the centers of
hard ellipsoids. We analyzed the results of the simulatio
using two current theories of orientational ordering of solu
in nematic liquid crystals.

In a purely hard-core system, solute orientational or
varies in a predictable manner: increases in solute shape
isotropy and solvent density enhance the degree of order
The orientational distribution functions were analyzed us
a theory due to Terzis and Photinos@22#, which was found to
underestimate the solute ordering drastically. This discr
ancy is due to the complete neglect of solvent-solvent co
lations in the derivation of the solute mean-field orientatio
potential. The severity of this approximation calls into que
tion the results of the study which employed the theory
analyze orientational order parameters of solutes measure
previous NMR experiments. Further, the distribution fun
tions were refit by optimizing the effective solvent packin
fraction. The distributions calculated in the fits were sign
cantly better than the original calculated distributions; in a
dition, the effective packing fractions were found to be co
sistently greater than their true values, in agreement with
experimental study by Terziset al. @45#. However, unlike
that study, it was found that the effective packing fractio
varied significantly among solutes of different shapes, a
sult that calls into question the predictive power of the ha
core component of the TP mean-field potential.

In the quadrupolar systems, the relationship between
hard-core and electrostatic contributions to solute orien
tional ordering was investigated in detail. The behavior
the properties for a large collection of solutes of varyi
shapes and quadrupole moments was examined. In add
we were particularly interested in testing the accuracy o
mean-field model proposed by Burnell and co-workers
which the interaction between the molecular quadrupole m
ment and a solute-independent average EFG sampled b
solute constitutes an important orientational ordering mec
nism. To this end, the relationship between the measu
average EFG and orientational order parameters was ex
ined in detail. Further, a theoretical mean-field potential a
average EFG can be derived using a method due to Em
and co-workers. The theory provides a simple relations
between the solute order and various solute-solvent funct
in the vicinity of the solute. This approach was found to gi
some insight into the solute orientational behavior.

A significant result of the simulations employing the poi
quadrupole electrostatic model was that the measured E
sampled by the solute was found to be highly sensitive to
details of the properties of the solute, in contrast to the mo
put forward by Burnell and co-workers. In the case of no
spherical solutes, the EFG was found to experience a c
comitant change in sign with the solute quadrupole mome
This result is in sharp contradiction with certain key expe
mental NMR results, for which it was found that the ord
parameters of several molecules conform to the mean-fi
model where the solutes interact with an EFG which, at
very least has the same sign. The origin of this discrepanc
very likely the inadequacy of using point quadrupoles
dense systems for which the convergence of the multip
expansion at short distances becomes an important cons

-
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ation. Thus an improved description of molecular elect
static interactions will likely be essential in order to gener
solute orientational behavior consistent with that obser
experimentally.

Despite the problems with the molecular model outlin
above, the observed orientational ordering was qualitativ
consistent with the predictions of the mean-field model,
ing the measured values of the EFG for each solute indiv
ally. In addition, the EL theoretical prediction of the solu
EFG, which is related to the local solvent structure, w
quite accurate. The EL prediction of the orientational ord
of spherical solutes, for which there is only the electrosta
contribution to ordering, was qualitatively correct, thou
quantitatively rather poor. Thus the mathematical appro
mations of the EL theory appear to be too severe. Note
the theory requires a simple form for the pair potential
order to yield a simple, tractable expression for the me
ls
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field potential. However, as we described above, the inte
tion between point moments to represent electrostatic in
actions was found to be inadequate for dense systems. T
given the combined inadequacy of both the basic elec
static pair potential and the mathematical approximations
the theory, an accurate theoretical description of the elec
static contributions to the orientational ordering of solutes
a nematic liquid crystal is not yet available.
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